суммируемость - перевод на Английский
Diclib.com
Словарь ChatGPT
Введите слово или словосочетание на любом языке 👆
Язык:

Перевод и анализ слов искусственным интеллектом ChatGPT

На этой странице Вы можете получить подробный анализ слова или словосочетания, произведенный с помощью лучшей на сегодняшний день технологии искусственного интеллекта:

  • как употребляется слово
  • частота употребления
  • используется оно чаще в устной или письменной речи
  • варианты перевода слова
  • примеры употребления (несколько фраз с переводом)
  • этимология

суммируемость - перевод на Английский

ПОНЯТИЕ В МАТЕМАТИЧЕСКОМ АНАЛИЗЕ
Сумма ряда; Бесконечная сумма; Ряд матриц; Числовые ряды; Критерий абсолютной сходимости суммы числовых рядов; Критерий абсолютной сходимости; Сходимость ряда; Сходящийся ряд; Расходящийся ряд; Суммируемость; Частичная сумма; Частичные суммы; Частичная сумма ряда; Числовой ряд
  • <1</math>.
  • Площадь под гиперболой <math>y=1/x</math> в интервале <math>(1,a)</math> равна <math>\ln(a)</math>
  • параболы]]

суммируемость         
f.
summability, integrability
summability         
INFINITE SERIES THAT IS NOT CONVERGENT
Summation method; Summation methods; Summability method; Summability methods; Summability theory; Abel summability; Abel summation method; Divergence to infinity; Summability; Abelian mean; Nõrlund mean; Abel summation; Lindelöf summation; Lindelöf sum; Totally regular summation method; Abel sum; Norlund mean; Lindelof summation; Lindeloef summation; Lindelof sum; Lindeloef sum; Summation theory; Divergent integral; Draft:Divergent Mathematics; Divergence (infinite series); Nonconvergent series; Nonconvergence; Nonconvergent; Ingham summability; Riemann summability; Divergent asymptotic series

[sʌmə'biliti]

общая лексика

суммируемость

существительное

математика

суммируемость

strong summability      

математика

сильная суммируемость

Определение

Расходящийся ряд

ряд, у которого последовательность частичных сумм не имеет конечного предела. Если общий член ряда не стремится к нулю, то ряд расходится, например 1 - 1 + 1 - 1 + ... + (-1) n-1 + ...; примером Р. p., общий член которого стремится к нулю, может служить гармонический ряд 1 + + ...+ +.... Существуют многочисленные классы Р. р., сходящихся в том или ином обобщённом смысле, так что каждому такому Р. р. можно приписать некоторую "обобщённую сумму", обладающую важнейшими свойствами суммы сходящегося ряда. См. Ряд, Суммирование расходящихся рядов и интегралов.

Википедия

Ряд (математика)

Ряд, называемый также бесконечная сумма — одно из центральных понятий математического анализа. В простейшем случае ряд записывается как бесконечная сумма чисел:

a 1 + a 2 + a 3 + + a n + {\displaystyle a_{1}+a_{2}+a_{3}+\ldots +a_{n}+\ldots \quad } Краткая запись: n = 1 a n {\displaystyle \sum _{n=1}^{\infty }a_{n}} (иногда нумерацию слагаемых начинают не с 1, а с 0)

Здесь a 1 , a 2 , a 3 {\displaystyle a_{1},a_{2},a_{3}\dots }  — последовательность вещественных или комплексных чисел; эти числа называются членами ряда.

Чтобы присвоить числовому ряду значение суммы, рассмотрим последовательность «частичных сумм», которые получаются, если оборвать бесконечную сумму на каком-то члене:

S 1 = a 1 {\displaystyle S_{1}=a_{1}}
S 2 = a 1 + a 2 {\displaystyle S_{2}=a_{1}+a_{2}}
S 3 = a 1 + a 2 + a 3 {\displaystyle S_{3}=a_{1}+a_{2}+a_{3}}
{\displaystyle \cdots }
S n = a 1 + a 2 + a 3 + + a n {\displaystyle S_{n}=a_{1}+a_{2}+a_{3}+\dots +a_{n}}
{\displaystyle \cdots }

Если последовательность частичных сумм имеет предел S {\displaystyle S} (конечный или бесконечный), то говорят, что сумма ряда равна S . {\displaystyle S.} При этом, если предел конечен, то говорят, что ряд сходится. Если предел не существует или бесконечен, то говорят, что ряд расходится.

Для выяснения ключевого в анализе вопроса, сходится или нет заданный ряд, предложены многочисленные признаки сходимости.

Числовые ряды и их обобщения (см. ниже о нечисловых рядах) используются повсеместно в математическом анализе для вычислений, для анализа поведения разнообразных функций, при решении алгебраических или дифференциальных уравнений. Разложение функции в ряд можно рассматривать как обобщение задания вектора координатами, эта операция позволяет свести исследование сложной функции к анализу элементарных функций и облегчает численные расчёты. Ряды — незаменимый инструмент исследования не только в математике, но и в физике, астрономии, информатике, статистике, экономике и других науках.

Как переводится суммируемость на Английский язык